#### **Image Compression**

- GIF (Graphics Interchange Format)
- PNG (Portable Network Graphics)/MNG (Multiple-image Network Graphics)
- JPEG (Joint Pictures Experts Group)

#### GIF (Graphics Interchange Format)

- Introduced by Compuserve in 1987 (GIF87a), multiple-image in one file/application specific metadata support added in 1989 (GIF89a)
- LZW (Lempel-Ziv-Welch) compression replaced earlier RLE (Run Length Encoding) B&W version
   Patented by Compuserve/Unisys (has run out in US, will run out in June 2004 in Europe)
- Maximum of 256 colours (from a palette) including a "transparent" colour
- · Optional interlacing feature
- http://www.w3.org/Graphics/GIF/spec-gif89a.txt

#### LZW (Lempel-Ziv-Welch)

- Most of this method was invented and published by Lempel and Ziv in 1978 (LZ78 algorithm)
- A few details and improvements were later given by Welch in 1984 (variable increasing index sizes, efficient dictionary data structure)
- Achieves approx. 50% compression on large English texts
- superseded by DEFLATE and Burrows-Wheeler transform methods

## LZW Algorithm

- Dictionary initially contains all possible one byte codes (256 entries)
- Input is taken one byte at a time to find the longest initial string present in the dictionary
- The code for that string is output, then the string is extended with one more input byte, b
- A new entry is added to the table mapping the extended string to the next unused code
- The process repeats, starting from byte b
- The number of bits in an output code, and hence the maximum number of entries in the table is fixed
- once this limit is reached, no more entries are added

# PNG (Portable Network Graphics)

#### Uses DEFLATE:

LZ77 Algorithm with Huffman coding (patent free)Spec: http://www.ietf.org/rfc/rfc1951.txt

- · Combines this with prediction:
- for each image line a filter method is chosen which predicts the colour of each pixel based on the colours of previous pixels and subtracts the predicted colour of the pixel from the actual colour
- Supports up to 48-bit colour
- Data "chunks" can be "critical" or "ancillary"
- Spec: http://www.w3.org/TR/PNG/

## LZ77 (Lempel Ziv 1977) Algorithm

- keeps a history window of the most recently seen data and compares the current data being encoded with the data in the history window
- References to the position in the history window, and the length of the match are placed into the compressed stream
- If a match cannot be found the character itself is simply encoded into the stream after being flagged as a literal

#### MNG (Multi-image Network Graphics)

- Supports animations
- Version 1.0 of the MNG specification was released in January 2001 (http://www.libpng.org/pub/mng/spec/)
- Structure very similar to PNG
- Differences from PNG:
   slightly different signature
   more chunks to support the animation features

#### JPEG (Joint Photographic Experts Group)

- Used to compress photographic images (gradual changes in colour)
- Not good for computer graphics (sudden changes in colour)
- Can reduce data size 10:1 without visible loss
- Modes: sequential, progressive, hierarchical,
- losslessUses the JFIF (JPEG File Interchange Format) file format:
  - http://www.w3.org/Graphics/JPEG/jfif3.pdf



#### **Block Preparation**

- Assume 24-bit RGB input
- Transform into 24-bit YUV (PAL) / YIQ (NTSC)
- Separate Y,U,V matrices
- Chroma subsampling: Square blocks of four pixels are averaged in the U, V matrices (producing YUV4:2:0)
- Element values are re-scaled [-128, 127]
- Image is "tiled": elements are arranged into 8x8 blocks

### FDCT and Quantisation

$$S_{ij} = \frac{1}{4} C_j C_i \sum_{x=0}^{7} \sum_{x=0}^{7} P_{xy} \cos \left[ (2x+1)j\pi/16 \right] \cos \left[ (2y+1)i\pi/16 \right]$$

$$C_i, C_i = 1/\sqrt{2}$$
 when  $i, j = 0$ 

$$C_i, C_j = 1$$
 otherwise

Quantisation: DCT Coefficients are divided by the element in the equivalent position in a quantisation table. The table reduces the high frequency components more. Quantisation table is changed by the user controlled quality parameter.







| Zig-zag sequencing (linearisation of the 2D matrix) |                         |           |                   |           |                   |           |                       |
|-----------------------------------------------------|-------------------------|-----------|-------------------|-----------|-------------------|-----------|-----------------------|
| DC                                                  | AC <sub>01</sub>        | AC 02     | →AC <sub>03</sub> | $AC_{04}$ | >AC <sub>05</sub> | $AC_{06}$ | $\rightarrow AC_{07}$ |
| AC 10                                               | $AC_{11}$               | $AC_{12}$ | $AC_{13}$         | $AC_{14}$ | $AC_{15}$         | $AC_{16}$ | AC17                  |
| $A \widetilde{C}_{20}$                              | $AC_{21}$               | $AC_{22}$ | AC 23             | AC 24     | AC 25             | $AC_{26}$ | $AC_{27}$             |
| AC 30                                               | $AC_{31}$               | $AC_{32}$ | $AC_{33}$         | $AC_{34}$ | $AC_{35}$         | $AC_{36}$ | AC 37                 |
| AC 40                                               | $AC_{41}$               | AC 42     | AC 43             | AC 44     | AC45              | $AC_{46}$ | AC47                  |
| AC 50                                               | $AC_{51}$               | $AC_{52}$ | $AC_{53}$         | AC 54     | AC'55             | $AC_{56}$ | AC 57                 |
| $AC_{60}$                                           | $AC_{61}$               | $AC_{62}$ | $AC_{63}$         | $AC_{64}$ | AC 65             | AC 66     | $AC_{67}$             |
| AC 70                                               | $\rightarrow_{AC_{11}}$ | AC 72     | >AC73             | AC 74     | >AC75             | AC 76     | $>_{AC_{\eta\eta}}$   |
|                                                     |                         |           |                   |           |                   |           |                       |

## Entrophy Encoder

- The DC coefficients at (0,0) are encoded by taking the differences from previous values
- The AC coefficients are encoded using runlength encoding (the zig-zag pattern should maximize the runs of 0s)
- Huffman coding assigns shorter codes to more frequent numbers





### JPEG references

- "Digital Compression and Coding of Continuous-tone Still Images, Part 1, Requirements and Guidelines." ISO/IEC JTC1 Draft International Standard 10918-1, Nov. 1991.
- "Digital Compression and Coding of Continuous-tone Still Images, Part 2, Compliance Testing." ISO/IEC JTC1 Committee Draft 10918-2, Doi: 1001 2, Dec. 1991.

- 2, Dec. 1991.
  http://www.wotsit.org/search.asp?page=5&s=graphics
  Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
  "JPEG Still Image Data Compression Standard" William B. Pennebaker, Joan L. Mitchell, Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1